

MDA Clinical & Scientific Conference 2022

Virtual IR event

Basel, 16 March 2022

This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as 'believes', 'expects', 'anticipates', 'projects', 'intends', 'should', 'seeks', 'estimates', 'future' or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others:

- 1 pricing and product initiatives of competitors;
- 2 legislative and regulatory developments and economic conditions;
- 3 delay or inability in obtaining regulatory approvals or bringing products to market;
- 4 fluctuations in currency exchange rates and general financial market conditions;
- 5 uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products;
- 6 increased government pricing pressures;
- 7 interruptions in production;
- 8 loss of or inability to obtain adequate protection for intellectual property rights;
- 9 litigation;
- 10 loss of key executives or other employees; and
- 11 adverse publicity and news coverage.

Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche's earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche.

For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com

All mentioned trademarks are legally protected.

Welcome

Bruno Eschli

Head of Investor Relations

Agenda

Welcome

Bruno Eschli, Head of Investor Relations

Neuromuscular franchise strategy

Samir Megateli, Global Franchise Head, Neuromuscular Diseases, Global Product Strategy

Key Data at MDA 2022

- Evrysdi clinical update including 3-Year data for SUNFISH in type 2/3 SMA
- Delandistrogene moxeparvovec (SRP-9001) in DMD clinical update

Paulo Fontoura, Global Head of Neuroscience, Immunology, Ophthalmology, Infectious and Rare Diseases Clinical Development

Q&A

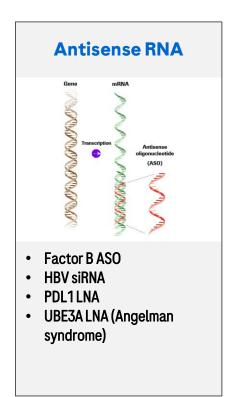
Neuroscience portfolio differentiated on targets and technologies

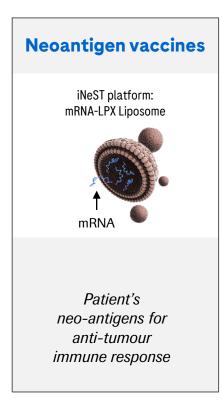
Ph III studies in Alzheimer's to read out in Q4 2022

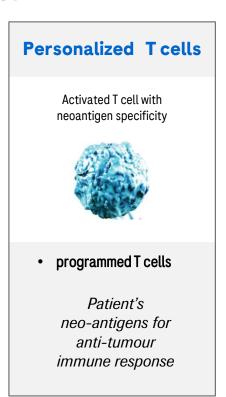
P	h I (5 NMEs)		Pl	h II (9 NMEs)		Ph II	I (3 NMEs, 1AI)		La	unched (3)	
RG6091	UBE3A LNA Angelman syndrome	RG	7935	prasinezumab Parkinson's		RG1450	gantenerumab Alzheimer's		RG1594	Ocrevus MS	-
RG7637	undisclosed	RG	6100	semorinemab Alzheimer's		RG6356	delandistrogene RD moxeparvovec DMD		RG6168	Enspryng NMOSD	RD
RG6182	undisclosed		JCB 107	bepranemab Alzheimer's		RG6168	Enspryng gMG	243, 7 7, 00 0	RG7916	Evrysdi SMA type 1/2/3	RD
RG6289	undisclosed Alzheimer's	RG	6102	brain shuttle gantenerumab Alzheimer's	247 pp pq	RG7845	fenebrutinib MS				
RG6035	brain shuttle CD20 MS	RG	7412	crenezumab Alzheimer's							
			7916+ 36237	Evrysdi + RD GYM329 ¹ SMA type2/3						-immunologic disorders -degenerative disorders	
		N	IME	N/D FSHD		, John	Small molecule Antibody			-developmental disorders -muscular disorders	
		aut of RG	7906	ralmitaront Schizophrenia			Gene therapy Brain shuttle		✓ FDA a	iatric disorders	
		သ _{ို့သို} တ်တွင် RG	7816	GABA _A α 5 PAM Autism spectrum disorder		nowway.	Locked nucleic acid		RD RD=	Rare disease	

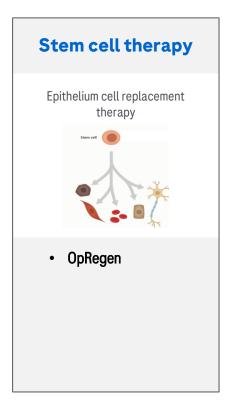
Gene & cell therapy at Roche

Developing novel platforms in Neuroscience, Oncology and Opthamology


AVV Adeno associated virus • Luxturna • SPK-8011 (hem A)


SPK-8016 (hem A inhibitors)


6 preclinical assets (Spark)


SPK-3006

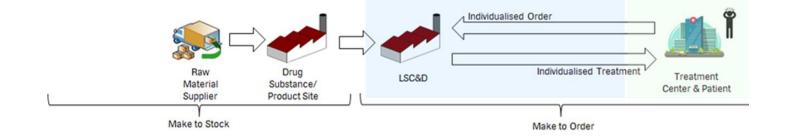
SRP-9001 (DMD)

Gene therapy platform development on-going

Our approach driven by safety, predictability, efficacy and durability

Variety of naturally occurring and now engineered AAV capsids

AAV vectors have different tissue tropism


Vector payload optimisation including gene regulation

Advanced delivery methods

- less invasive
- · targeted distribution
- · lowest effective dose
- Optimal immunomodulatory regimens

Manufacturing: One Batch – several patients, e.g. gene therapies, RNA therapies

2022: Key late-stage newsflow* and upcoming IR events

	Compound	Indication	Milestone
	Vabysmo	nAMD/DME	US/EU approval
	Susvimo	nAMD	EU approval
Pogulatory	mosunetuzumab	3L+ FL	US/EU approval
Regulatory	Tecentriq	Adjuvant NSCLC	EU approval
	Hemlibra	Mild to moderate hemophilia A	EU approval
	Polivy + R-CHP	1L DLBCL	EU/US approval
	glofitamab	3L+ DLBCL	Ph lb NP30179
	Tecentriq + tiragolumab + chemo	1L ES-SCLC	Ph III SKYSCRAPER-02
	Tecentriq + chemo	Adjuvant SCCHN	Ph III IMvoke010
	Tecentriq+tiragolumab	1L PDL1+ NSCLC	Ph III SKYSCRAPER-01
	Tecentriq	Adjuvant RCC	Ph III IMmotion010
	giredestrant	2/3L HR+ mBC	Ph II acelERA
Phase III / pivotal readouts	Tecentriq + chemo	Adjuvant HCC	Ph III IMbrave050
rnase III / pivotat readouts	Venclexta + dexamethasone	t(11;14) MM	Ph III CANOVA
	Tecentriq + chemo	Neoadjuvant NSCLC	Ph III IMpower030
	Tecentriq + tiragolumab + chemo	1L esophageal cancer	Ph III SKYSCRAPER-08
	Alecensa	Adjuvant ALK+ NSCLC	Ph III ALINA
	gantenerumab	Alzheimer's disease	Ph III GRADUATE 1/2
	Susvimo	DME	Ph III PAGODA
	Susvimo	DR	Ph III PAVILION

Virtual event	Virtual event	Roche ESG Day	Virtual/live event	Roche Pharma Day
Angiogenesis	MDA	Access to Healthcare	ASCO	
Monday, 14 February	Wednesday, 16 March	Monday, 16 May	June	Monday, 12 September
16:30 to 17:45 CEST	16:30 to 17:30 CEST		TBC	TBC

9

^{*} Outcome studies are event-driven: timelines may change

Neuromuscular franchise strategy

Samir Megateli

Global Franchise Head, Neuromuscular Diseases Global Product Strategy

Neuromuscular Franchise at Roche

Together, we envision a future of unlimited potential for the NMD community by translating science into meaningful outcomes

LEAD the next wave of breakthrough innovation in neuromuscular field

EXPAND impact by advancing care across the patient journey in multiple neuromuscular diseases

BUILD the foundation to transform the future of neuromuscular diseases

Our key building blocks to achieve our vision

Accelerate pipeline and expand portfolio of molecules and integrated solutions

Partner with NMD community to shape ecosystem and sustainability

Leverage One Roche NMD network and capabilities

Our expanding Roche Neuromuscular portfolio

Antibody

Gene therapy

Utilising a range of technology platforms and biological approaches

Early Stage	Phase II			Phase III		Launche
NME 3 projects	RG7916 + RG6237	Evrysdi + GYM329 ¹ SMA type2/3	RG6168	Satralizumab gMG	RG7916	Evry SM
	NME	N/D FSHD ²	RG6107	Crovalimab N/D		
Small molecule			RG6356	delandistrogene moxeparvovec DMD		

^{1.} Phase II/III currently in Phase II start up; 2. Proof of concept study; N/D = not disclosed; NME=new molecular entity; DMD=Duchenne muscular dystrophy; gMG=generalised myasthenia gravis; SMA=spinal muscular atrophy; FSHD= Facioscapulohumeral muscular dystrophy

Evrysdi: Meaningful evidence generated across a broad program

Long term efficacy and safety data demonstrating sustained increase in motor function

Overview of the risdiplam development program

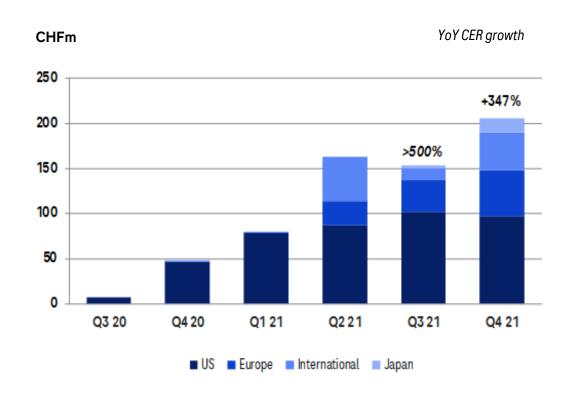
Evrysdi , risdiplam ob ny podrversales

13

- Spanning Types 1, 2, & 3 SMA; both naive and pre-treated
- Newborns to 60 years old
- Including real-world spectrum of SMA severe scoliosis, joint contractures, low baseline motor scale scores, etc.
- Long-term efficacy data from the pivotal SUNFISH study at 3 years confirm increases in motor function after one year of treatment with Evrysdi are sustained at three years

Presymptomatic Newborns	Symptomatic Infants	Younger Children	Older Children	Teenagers	Adults	
	—	-		<u>-</u>		
Rainbowfish	Firefish			Sunfish		
			Jewelfis	sh		
	≤ 5 years old			> 5 years old		
~	~15% prevalence*			~85% prevalence*		
Focus of I	many recent trial	s in SMA	underserved	ralent population t I lacking treatmen supporting evidend	t options and	

* Estimated 2020 prevalence in US and EU5


Evrysdi in SMA

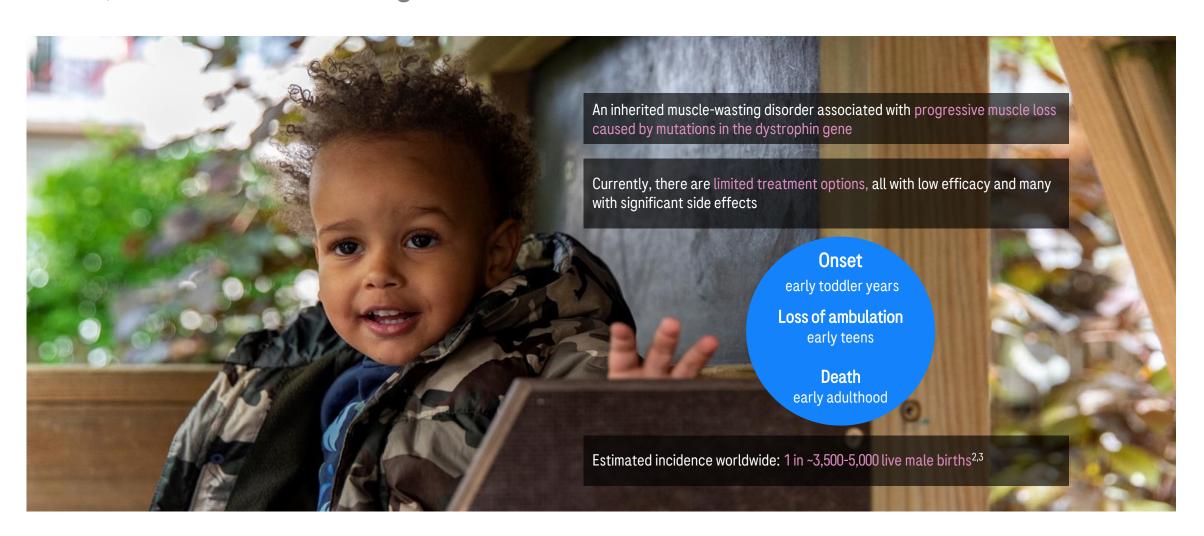
Clinically meaningful efficacy sustained over the long-term 3 year data in a broad and heterogeneous population (SUNFISH) >5,000 patients treated to date In clinical trials, CUP/PAA and in the commercial setting Preserves swallowing & feeding ability Bulbar function is **highly** important to patients and treating physicians Well-tolerated No treatment-related AEs discontinuations in trials Consistent increase in SMN protein Throughout the CNS and in peripheral tissues At-home administration Low burden on patients, caregivers and the health care system

SMA franchise: Evrysdi with strong US and EU launches

Most prescribed treatment in the US with >20% share; Germany with ~30% share

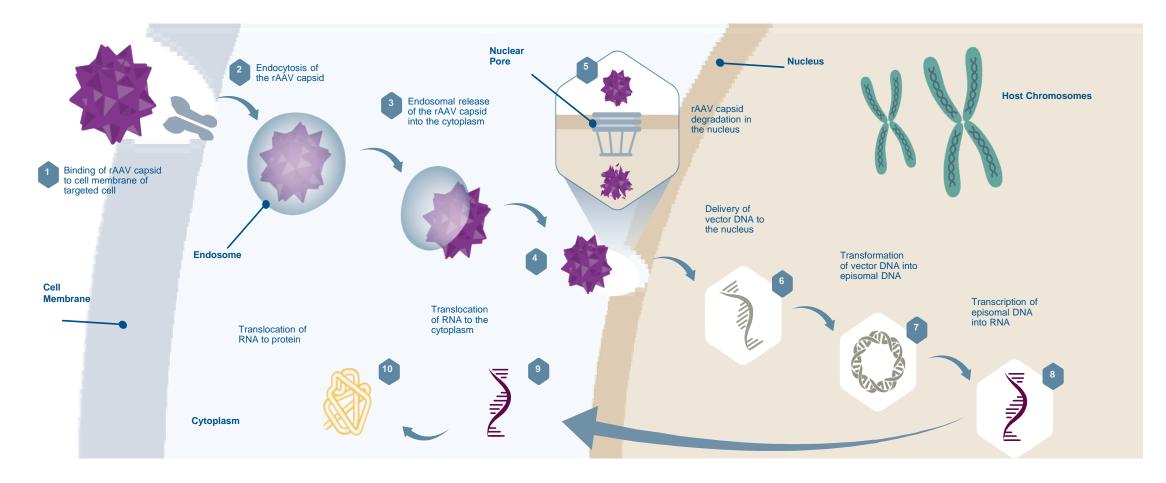
Launch update

- >5,000 patients treated worldwide (commercial, clinical trials, compassionate use), approved in 75 countries
- US: Ongoing growth in 2022 driven by switches and naive patient starts: ²/₃ of total patients on Evrysdi from switches
- EU: Strong launches in early launch countries
- US/EU: Filed for label extension (<2 months old) based on RAINBOWFISH
 - Priority review granted in US

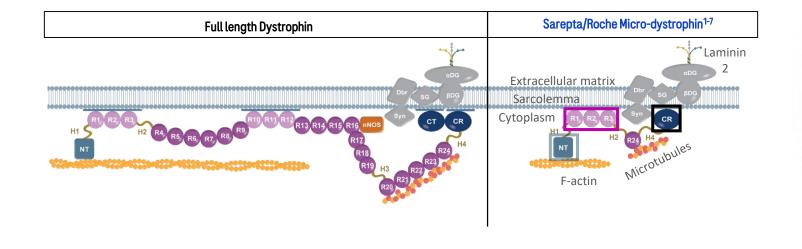

Outlook 2022

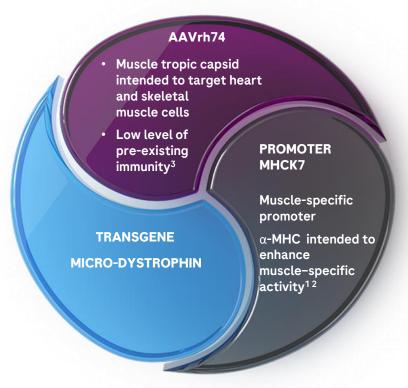
- Continued growth from geographical expansion and market share gains
- Ph II/III (MANATEE) Evrysdi + anti-myostatin in SMA to start in the coming weeks

Duchenne muscular dystrophy (DMD)


A rare, fatal neuromuscular genetic disease

Delandistrogene moxeparvovec (SRP-9001)


Designed to deliver the micro-dystrophin transgene directly to the muscle tissue for the targeted expression of functional micro-dystrophin protein



Key components of delandistrogene moxeparvovec

The transgene has been developed with some of the most important parts of dystrophin

Comprehensive development program of delandistrogene moxeparvovec

Study 101

4 patients
Ages 4-7, ambulatory
Open-Label
NCT03375164

- Goals included safety, proof-of-concept
- Enrolment completed
- One-year results published in JAMA Neurology
- Positive 2-year and 3-year functional data

Study 102

41 patients
Ages 4-7, ambulatory
Placebo-Controlled
NCT03769116

- Goals included safety, function
- Enrolment completed
- 5-year 3-part study
- Part 1 (48 weeks) complete
- Part 2 Ongoing

ENDEAVOR

Study 103

38 patients
Ages 3+ ambulatory and
non-ambulatory
Open-Label
NCT04626674

- Goals include expression and safety
- Enrolment completed
- No mutation exclusion, except for patients below 4 years

EMBARK

Study 301

120 patients
Ages 4-7, ambulatory
Double-blind, placebocontrolled
NCT05096221

- Pivotal Phase III study
- Primary endpoint: NSAA
- Excludes mutations 1 to 17, 45

ENVOL

Study 302

20 patients
Ages 0-4
Open label

- Safety (primary) and Expression (secondary)
- Excludes mutations 1 to 17
- Planned FPI 2022, EU study population

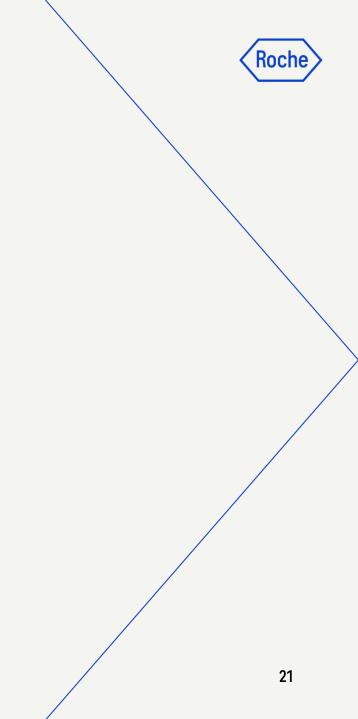
ENVISION

Study 303

3:1 nonambulatory/ambulatory patients in at least 80 patients

Double-blind, placebocontrolled

- No upper age restrictions for non-ambulatory
- Ambulatory: 8-18
- Primary endpoint: PUL
- Excludes mutations 1 to 17
- Planned FPI 2022



Key Data at MDA 2022

Paulo Fontoura MD, PhD

Global Head of Neuroscience, Immunology, Ophthalmology, Infectious and Rare Diseases Clinical Development

Evrysdi - clinical update from MDA 2022

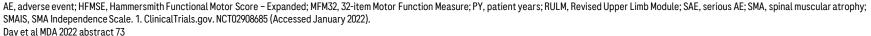
Sunfish: A randomized, placebo-controlled, double-blind study with broad inclusion criteria and a large dataset

Age 2-25 years

Type 2/non-ambulant Type 3 SMA*

Ability to sit independently Scoliosis and surgery for scoliosis or hip fixation accepted[†]

Change from baseline in MFM32 total score at Month 12

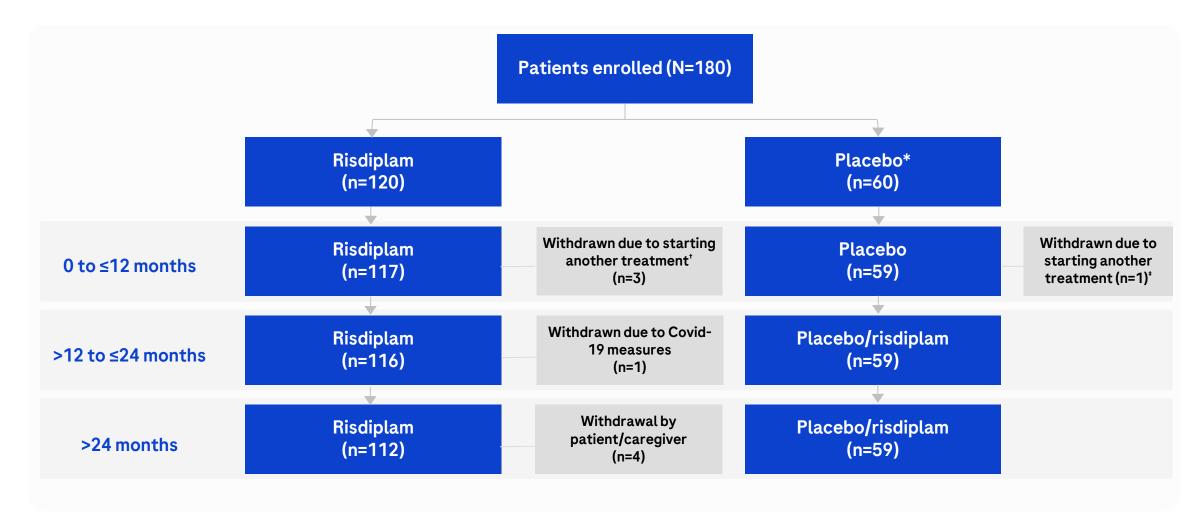

Exploratory efficacy analyses:

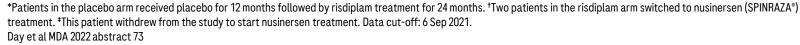
- Change from baseline in MFM32 total score at Month 36
- Percentage of patients who achieve stabilization or improvement (≥ 0) or a change of ≥ 3 from baseline in MFM32 total score at Month 36
- Change from baseline in RULM total score at Month 36
- Change from baseline in HFMSE total score at Month 36
- Change from baseline in SMAIS patient and caregiver upper limb total score at Month 36

Safety:

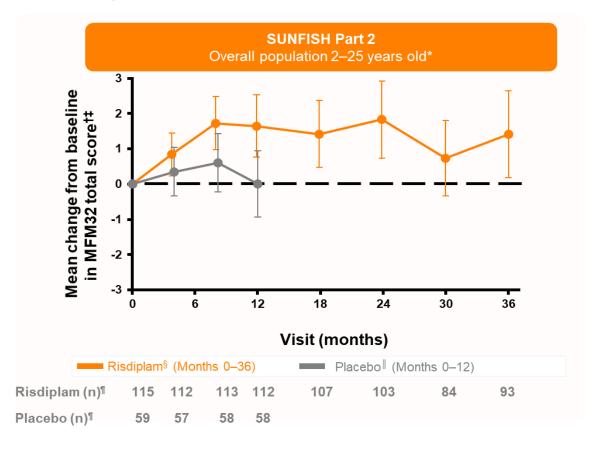
- Most common AEs and SAEs from baseline to Month 36
- Rate of AEs and SAEs per 100PY over 36 months

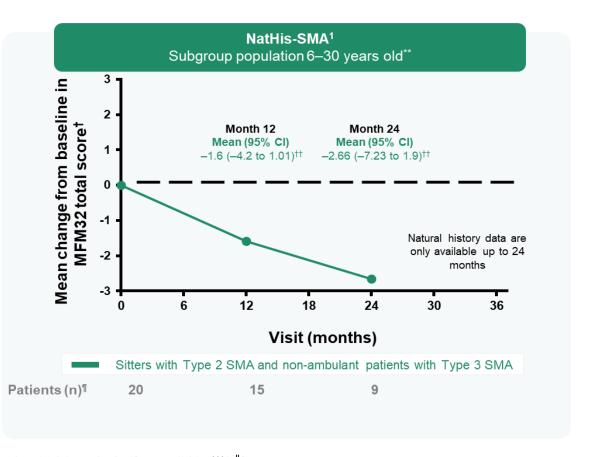
^{*}Non-ambulant is defined as not having the ability to walk unassisted for ≥10m. †RULM entry item A (Brooke score) ≥2; ability to sit independently (≥1 on item 9 of the MFM32). †Except in the 1 year preceding screening or planned within the next 18 months.





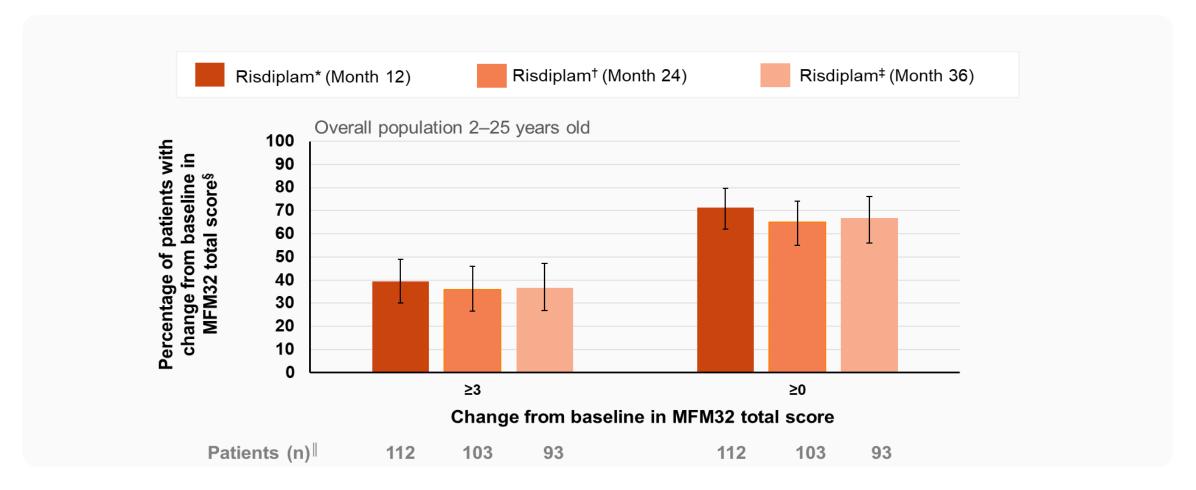
A total of 5% (9/180) of patients discontinued from SUNFISH Part 2 over 36 months





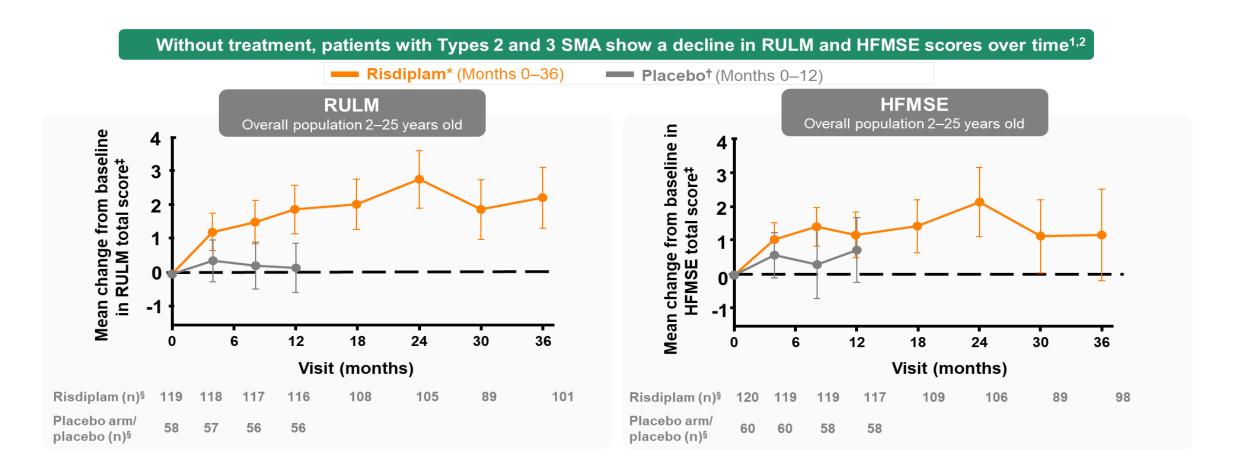
Roche

The increase in MFM32 total score was maintained between months 12 & 36 in the risdiplam arm; an overall decline was seen in natural history



*31% (55/180) of the SUNFISH intent-to-treat population were 2–5 years old at baseline. †+/-95% CI. †Baseline is the last measurement prior to the first dose of risdiplam or placebo. §Data cut-off: 6 Sep 2021. || Data cut-off: 6 Sep 2019. Patients in the placebo arm received placebo for 12 months followed by risdiplam treatment for 24 months. Risdiplam period not shown in this graph. ¶Number of patients with valid results = number of patients with an available total score (result) at respective time points. Intent-to-treat patients. **The NatHis-SMA study (NCT02391831) included nine study sites in Europe and 81 patients aged 2–30 years with Types 2 and 3 SMA. Patients aged 2–5 years old in the NatHis-SMA study were assessed using the MFM20 and were therefore not included in the data shown. ††The full 95% CIs have not been included in this graph as the y-axis has been shortened to allow an accurate comparison with SUNFISH results.

^{*}Data cut-off: 6 Sep 2019. †Data cut-off: 30 Sep 2020. †Data cut-off: 6 Sep 2021. §+/- 95% CI. || Number of patients with valid results = number of patients with an available total score (result) at respective time points. Intent-to-treat patients.

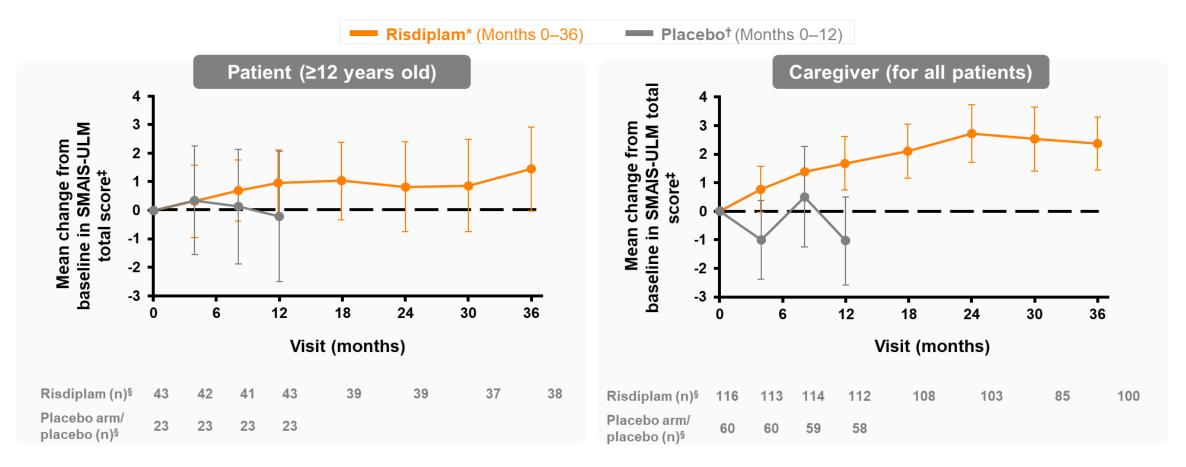

The percentage of patients is calculated by using the number of valid total scores at corresponding visits as a denominator. A score of ≥3 shows a marked improvement and a score of ≥0 shows stabilization or improvement. CI, confidence interval; MFM32, 32-item Motor Function Measure. Day et al MDA 2022 abstract 73

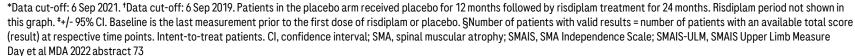
The increase in RULM and HFMSE total scores from baseline was sustained between Months 12 and 36 in the risdiplam arm

^{*}Data cut-off: 6 Sep 2021. †Data cut-off: 6 Sep 2019. Patients in the placebo arm received placebo for 12 months followed by risdiplam treatment for 24 months. Risdiplam period not shown in this graph.

†+/- 95% CI. Baseline is the last measurement prior to the first dose of risdiplam or placebo. §Number of patients with valid results = number of patients with an available total score (result) at respective time points. Intent-to-treat patients. CI, confidence interval; HFMSE, Hammersmith Functional Motor Scale – Expanded; RULM, Revised Upper Limb Module; SMA, spinal muscular atrophy.

1. Pera MC, et al. Muscle Nerve. 2019; 59:426–430; 2. Kaufmann P, et al. Neurology. 2012; 79:1889–1897.


Day et al MDA 2022 abstract 73

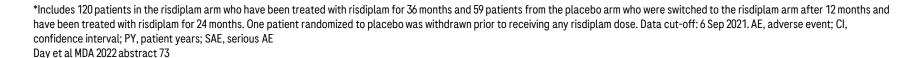


Patients and caregivers reported stabilization or continuous improvements in the SMAIS-ULM total score change from baseline with risdiplam treatment over 36 months

SUNFISH Parts 1 and 2: The observed AE profile over 36 months was reflective of underlying disease

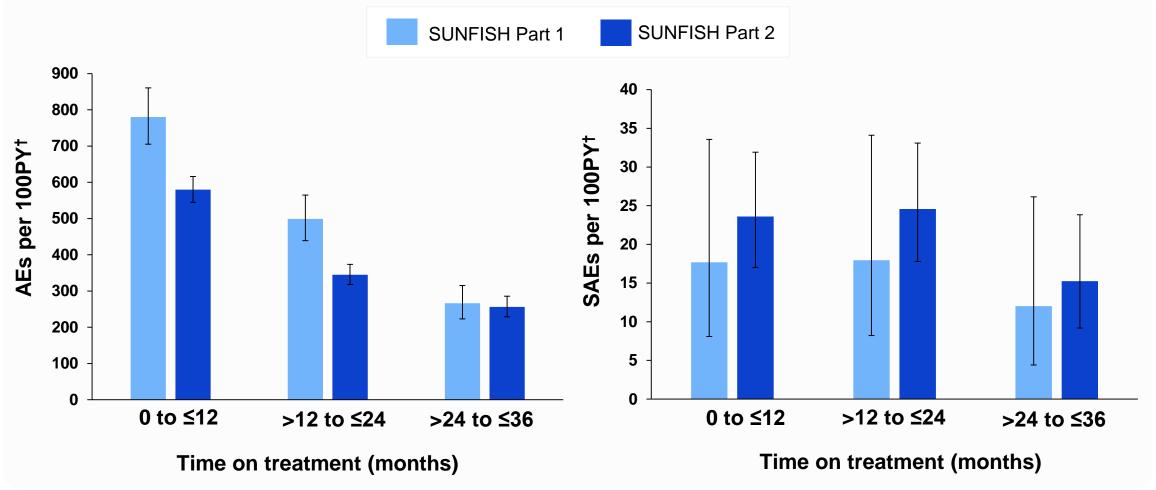
SUNFISH Part 1 (N=51)	Number of AEs per 100PY (95% CI)	
Total PY at risk	214.5	
	Headache	57.4 (47.7–68.4)
	Pyrexia	36.4 (28.8–45.4)
	Upper respiratory tract infection	28.9 (22.2–37.1)
AEs reported at a rate of	Cough	20.1 (14.5–27.0)
≥15 per 100PY	Vomiting	18.2 (12.9–24.9)
	Dysmenorrhea	16.3 (11.4-22.7)
	Nasopharyngitis	15.9 (11.0–22.2)
	Pneumonia	2.3 (0.8-5.4)
SAEs reported at a rate of	Femur fracture	0.9 (0.1-3.4)
≥0.9 per 100PY	Upper respiratory tract infection	0.9 (0.1-3.4)
	Vomiting	0.9 (0.1-3.4)

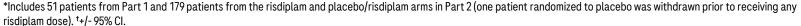
SUNFISH Part 2 (N=179)*	Number of AEs per 100PY (95% CI)	
Total PY at risk	495.8	
	Headache	46.4 (40.6-52.8)
	Upper respiratory tract infection	24.8 (20.6-29.6)
	Nasopharyngitis	22.4 (18.4-27.0)
AEs reported at a rate of ≥11	Vomiting	18.8 (15.1-23.0)
per 100PY	Pyrexia	18.4 (14.8-22.5)
	Cough	11.7 (8.9–15.1)
	Diarrhea	11.3 (8.5–14.7)
	Pneumonia	5.2 (3.4-7.7)
SAEs reported at a rate of	Gastritis	1.0 (0.3-2.4)
≥0.8 per 100PY	Pyrexia	0.8 (0.2-2.1)
	Upper respiratory tract infection	0.8 (0.2-2.1)



Ophthalmologic monitoring has not shown any evidence in humans of the retinal findings seen in preclinical monkey studies

Hematologic parameters have remained stable over time and no drug-induced skin findings have been observed

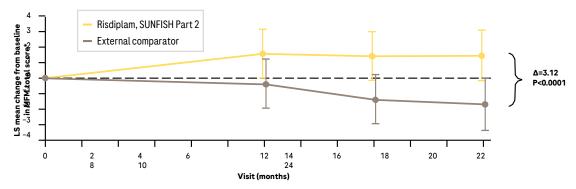


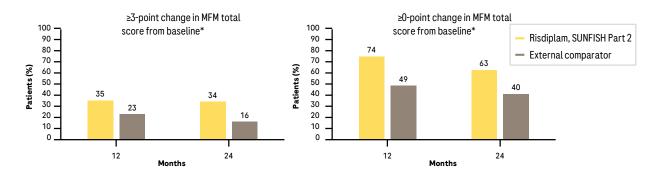


SUNFISH Part 2: 24-month efficacy of risdiplam compared with external control comparators

NatHis-SMA: A prospective and longitudinal natural history study of patients with Types 2 and 3 SMA

- 53 patients with Type 2 SMA
- 9 patients were non-ambulant with Type 3 SMA*
- 19 patients were ambulant with Type 3 SMA*


Olesoxime Phase 2 trial in patients with Type 2 or non-ambulant Type 3 SMA^{9,10}


- 39 patients with Type 2 SMA
- 18 patients with Type 3 SMA

*Ambulant is defined as being able to walk ≥10m without human or technical help (assessed by investigator).

Increases in MFM total score at Month 12 were observed in patients treated with risdiplam. Increases were sustained over 24 months, in contrast to a progressive decline in the untreated external comparator

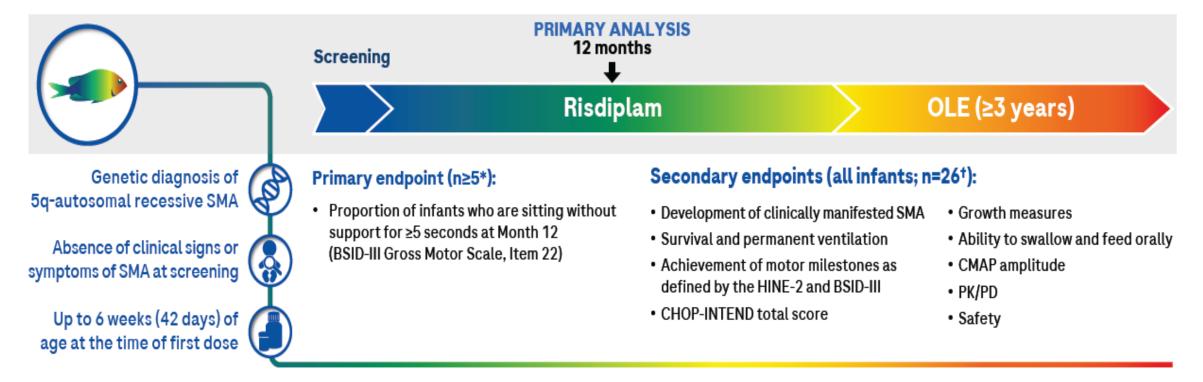
Risdiplam administration over 24 months led to improvement or stabilization in motor function at 12 and 24 months

Sunfish: Key conclusions from MDA 2022

The increase in motor function observed during the first year was sustained in the third year after long-term treatment with risdiplam (as measured by changes in MFM32, HFMSE and RULM)

Continuous improvement or stabilization in the level of help needed for activities of daily living was reported using the SMAIS-ULM In SUNFISH Parts 1 and 2, AEs and SAEs were reflective of underlying disease. No treatment-related AEs led to withdrawal from the study

In SUNFISH Parts 1 and 2, the overall rate of AEs decreased over 36 months. A trend towards lower SAE rates was observed in the third year of treatment

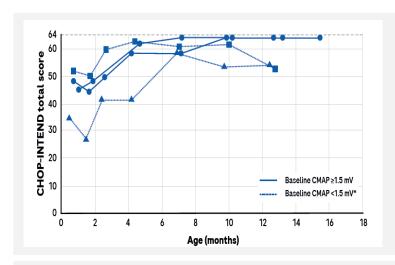


The gains observed with risdiplam treatment at Month 12 were maintained at Month 36

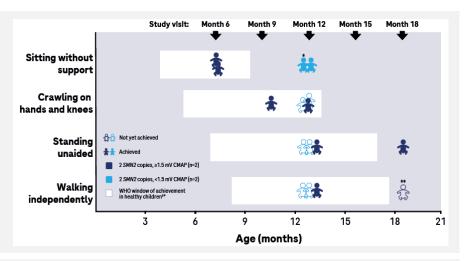
These results are an important milestone confirming longer-term efficacy and safety of risdiplam in a broad, heterogeneous population of individuals with Type 2 and non-ambulant Type 3 SMA

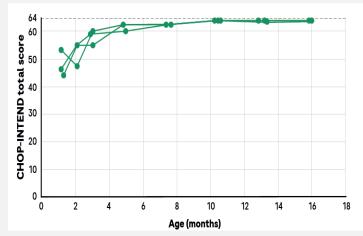
RAINBOWFISH: A multicenter, open-label, single-arm study of risdiplam in infants with genetically diagnosed, presymptomatic SMA

^{*}The primary efficacy population includes infants with two copies of the SMN2 gene and CMAP amplitude ≥1.5 mV at baseline. †Final patient number. As of 22 February 2022, worldwide recruitment for RAINBOWFISH is complete.

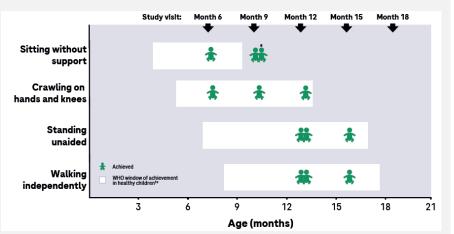


Roche


RAINBOWFISH: Preliminary efficacy in risdiplam-treated infants with presymptomatic SMA


Seven infants have been treated with risdiplam for ≥12 months

4 infants have 2 SMN2 copies


 Most infants with 2 SMN2 copies treated for >12 months (n=4) achieved near-maximum CHOP-INTEND scores, and most achieved motor milestones within WHO windows for healthy children

3 infants have >2 SMN2 copies

 All infants with >2 SMN2 copies treated for >12 months (n=3) achieved the maximum CHOP-INTEND score, and most achieved motor milestones within WHO windows for healthy children

RAINBOWFISH: Preliminary safety in risdiplam-treated infants with presymptomatic SMA

No SAEs were reported in infants with presymptomatic SMA treated with risdiplam

		2 SMN2 copies (n=7)	>2 <i>SMN2</i> copies (n=11)	Total risdiplam (n=18)
	Teething	2 (29)	4 (36)	6 (33)
	Nasal congestion	1 (14)	4 (36)	5 (28)
	Pyrexia	0	5 (45)	5 (28)
Most common	Diarrhea	0	4 (36)	4 (22)
AEs, n (%) (reported in ≥3 infants)†	Viral infection	2 (29)	2 (18)	4 (22)
infants)†	Vomiting	1 (14)	3 (27)	4 (22)
	Constipation	2 (29)	1 (9)	3 (17)
	Cough	0	3 (27)	3 (17)
	Eczema	1 (14)	2 (18)	3 (17)

- AEs were more reflective of the age of the infants rather than the underlying SMA.
- Two related AEs were reported in two infants
- Diarrhoea (reported in one infant)
- skin discoloration (reported in one infant).
- As of the data cut-off,[‡] related AEs had resolved or were resolving with ongoing risdiplam treatment.
- Pneumonia had not been reported in any infants.
- Preclinical safety findings were not observed in any infants in RAINBOWFISH:

^{*}Since the previous data cut-off (20 Feb 2021), one SAE of gastroenteritis norovirus was reclassified as an AE, and two AEs that were previously classified as related AEs (increased alanine aminotransferase and increased aspartate aminotransferase [both reported in one infant]) were deleted.

†Additional AEs that were reported in ≥2 infants were accidental overdose, conjunctivitis, gastroenteritis, papule, rhinitis and rhinorrhea. †Data cut-off: 1 Jul 2021. Multiple occurrences of the same AE in an individual are counted only once. Includes AEs with onset from first dose of study drug up to the cut-off date.

Rainbowfish: Key conclusions from MDA 2022

No SAEs were reported in presymptomatic infants treated with risdiplam for up to 22.8 months. No risdiplam-associated ophthalmologic findings were observed

Most of the infants
treated with risdiplam for
≥12 months reached nearmaximum CHOP-INTEND
scores by 4-5 months of
age and achieved motor
milestones within the
WHO windows for health
children

All seven infants treated for ≥12 months achieved sitting without support by Month 12 All seven infants who had received risdiplam for ≥12 months maintained the ability to swallow solid food and were able to feed exclusively by mouth

- RAINBOWFISH will help to determine the dose of risdiplam for infants <2 months of age
- US/EU: Filed for label extension (<2 months old) based on RAINBOWFISH
 - Priority review granted in US

Delandistrogene moxeparvovec (SRP-9001) in DMD clinical update from MDA 2022

Comprehensive development program of delandistrogene moxeparvovec

Study 101

4 patients
Ages 4-7, ambulatory
Open-Label
NCT03375164

- Goals included safety, proof-of-concept
- Enrolment completed
- One-year results published in JAMA Neurology
- Positive 2-year and 3-year functional data

Study 102

41 patients
Ages 4-7, ambulatory
Placebo-Controlled
NCT03769116

- Goals included safety, function
- Enrolment completed
- 5-year 3-part study
- Part 1 (48 weeks) complete
- Part 2 Ongoing

ENDEAVOR

Study 103

38 patients
Ages 3+ ambulatory and
non-ambulatory
Open-Label
NCT04626674

- Goals include expression and safety
- Enrolment completed
- No mutation exclusion, except for patients below 4 years

EMBARK

Study 301

120 patients
Ages 4-7, ambulatory
Double-blind, placebocontrolled
NCT05096221

- Pivotal Phase III study
- Primary endpoint: NSAA
- Excludes mutations 1 to 17, 45

ENVOL

Study 302

20 patients
Ages 0-4
Open label

Safety (primary) and Expression (secondary)

- Excludes mutations 1 to 17
- Planned FPI 2022, EU study population

ENVISION

Study 303

3:1 nonambulatory/ambulatory patients in at least 80 patients

Double-blind, placebocontrolled

- No upper age restrictions for non-ambulatory
- Ambulatory: 8-18
- Primary endpoint: PUL
- Excludes mutations 1 to 17
- Planned FPI 2022

EMBARK phase III study of delandistrogene moxeparvovec

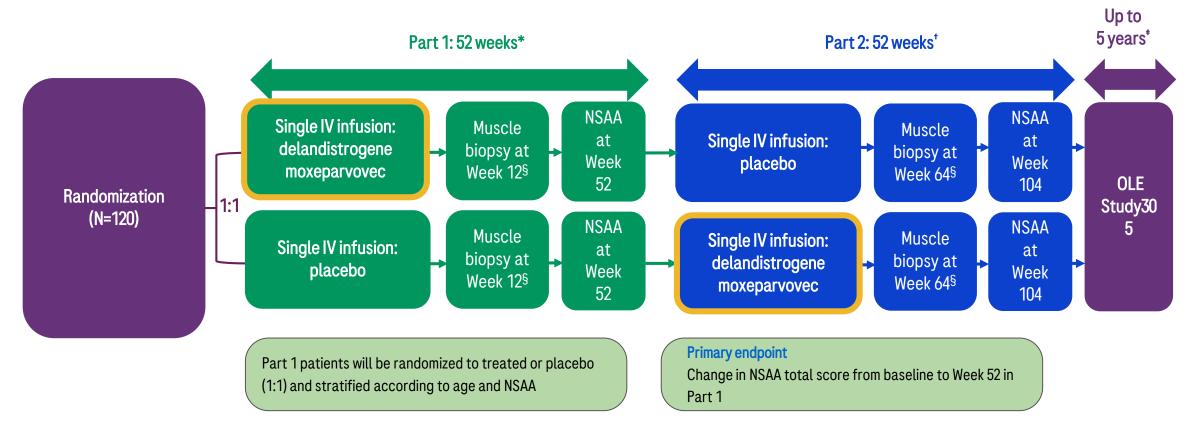
Ambulatory boys with DMD, aged ≥4 to <8 years

EMBARK (NCT05096221) is a placebo-controlled study assessing the safety and efficacy of commercially representative delandistrogene moxeparvovec material in a larger DMD patient population.

Key inclusion criteria

- Ambulatory and aged ≥4 to <8 years at randomization
- Definitive diagnosis of DMD based on documented clinical findings and prior genetic testing
- Confirmed DMD mutation within exons 18—44 or 46—79:
- Participants with mutations between or including exons 1–17 or mutations fully contained within exon 45 (inclusive) are not eligible
- In-frame deletions, in-frame duplications, and variants of uncertain significance are not eligible

Primary endpoint


Change in NSAA total score from baseline to Week 52 in part 1

Secondary endpoints

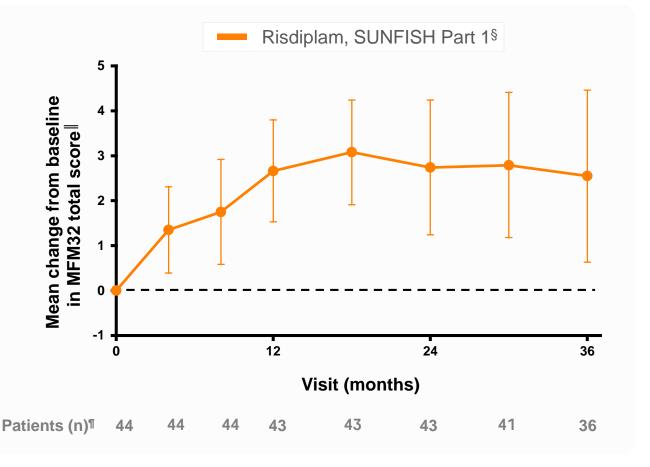
- Number of skills gained or improved at Week 52 as measured by the NSAA*
- Quantity of micro-dystrophin protein expression at Wk 12 as measured by western blot of biopsied muscle tissue*
- Change from baseline to Wk 52 in timed function tests: time to rise from the floor, 100MWR, time to ascend 4 steps, and 10MWR*
- Change in SV95C from baseline to Week 52 as measured by Syde®, a wearable device*
- Change in PROMIS score per domain (mobility and upper extremity function) from baseline over 52 weeks*
- Incidence of treatment-emergent AEs, SAEs and AEs of special interest; clinically significant changes in vital signs, physical examination findings, safety laboratory assessments, ECGs and ECHOs

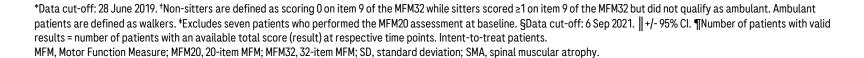
EMBARK study design

^{*}Double-blind, placebo-controlled. †Patients, caregivers, Investigators, and site staff remain blinded. †Separate, planned open-label study (Study 305) of up to 5 years post-delandistrogene moxeparvovec infusion. §Only a subset of patients will receive a muscle biopsy for expression assessments

Muntoni et al MDA 2022 abstract 28

Doing now what patients need next




Additional Slides from congress for reference

In SUNFISH Part 1, the increase in MFM32 total score change from baseline was maintained between Months 12 and 36 in patients treated with risdiplam

Baseline demographics*	SUNFISH Part 1 intent-to-treat population (N=51)
Age range (years)	2-25
Age at screening, years, median (range)	7 (2-24)
Gender, female/male, n (%)	27 (53)/24 (47)
Type 2 SMA, n (%) Type 3 SMA, n (%)	37 (73) 14 (27)
Motor function at baseline [†] Walkers, n (%) Sitters, n (%) Non-sitters, n (%)	7 (14) 33 (65) 11 (21)
Scoliosis, n (%)	29 (57)
Baseline MFM32 total score, mean (SD)	(n=44) [†] 42.9 (15.0)

