2.2.1 Special Dosing Instructions: If mycophenolate mofetil is added (concomitantly dosed within 3 h) to CellCept dosing should be initiated or increased in the dose should be reduced and the patient carefully observed for signs of increased toxicities. Patients should not receive blood donors. CellCept should be administered at a constant time of day in the evenings. Patients should not be under nutritional supplementation efforts in the presence of malnutrition and should be provided with adequate oral nutrition.

2.2.1 Special Dosing Instructions: If mycophenolate mofetil is added (concomitantly dosed within 3 h) to CellCept dosing should be initiated or increased in the dose should be reduced and the patient carefully observed for signs of increased toxicities. Patients should not receive blood donors. CellCept should be administered at a constant time of day in the evenings. Patients should not be under nutritional supplementation efforts in the presence of malnutrition and should be provided with adequate oral nutrition.
and there is evidence of a higher frequency of certain types of infections such as peritonitis, pneumonia, and a catalytic water molecule. This study was designed to assess the incidence of malignancy in CellCept-treated renal transplant patients in multiple trials, in cardiac patients in one randomised double-blind study, and in other indications. In the CellCept 2 g/day group, the incidence of malignancy compared to the 1 g/day group was 14.8% and 10.0%, respectively. This increase was not observed in the CellCept 3 g/day group. Therefore, the incidence of malignancy appears to be dose dependent.

3.1.1. Efficiency of CellCept

CellCept has been administered in combination with the following agents in clinical trials for the prevention of organ rejection after renal or cardiac transplantation:

- Azathioprine
- Cyclosporin
- Corticosteroids
- Daclizumab
- Antithymocyte globulin

CellCept is relatively free from undesirable interactions. It has been shown, using CellCept in combination with other agents, that the drug has no additive or synergistic toxicity. The drug is highly selective for T lymphocytes than on other cells. T lymphocytes express a high level of IMPDH type II, whereas B lymphocytes and epithelial cells express a low level of IMPDH type II. It has been shown that the drug does not bind to gut wall cells, M-phase cells, and endotoxin-stimulated macrophages.

3.1.2. Efficacy of CellCept

CellCept in combination with corticosteroids and ciclosporin for the prevention of organ rejection.

3.1.3. Overdosage

In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. Reports of cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given.

4.7.1. Antithymocyte globulin

Antithymocyte globulin (ATG) is a gamma globulin preparation that contains antibodies against human T lymphocytes. ATG is used to induce immunosuppression following renal or cardiac transplantation.

4.8.1. Azathioprine (AZA)

Azathioprine is an antimetabolite that is used to prevent the rejection of organ transplants. It is a prodrug that is converted to its active metabolite, 6-mercaptopurine, by hepatic enzymes. The active metabolite inhibits the proliferation of T lymphocytes and is used to prevent the rejection of organ transplants.

4.9.1. Ciclosporin (CIC)

Ciclosporin is a cyclic peptide that is used to prevent the rejection of organ transplants. It is a potent immunosuppressive agent that inhibits the proliferation of T lymphocytes and is used to prevent the rejection of organ transplants.

4.10.1. Corticosteroids (CORT)

Corticosteroids are a group of drugs that are used to prevent the rejection of organ transplants. They are potent immunosuppressive agents that inhibit the proliferation of T lymphocytes and are used to prevent the rejection of organ transplants.

5.1.2. Efficacy of CellCept

CellCept has been shown to be effective in the prevention of organ rejection in clinical trials. The results of these trials have shown that CellCept is effective in the prevention of organ rejection.

5.1.3. Overdosage

In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. Reports of cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug.

5.1.4. Antithymocyte globulin

Antithymocyte globulin (ATG) is a gamma globulin preparation that contains antibodies against human T lymphocytes. ATG is used to induce immunosuppression following renal or cardiac transplantation.

5.1.5. Azathioprine (AZA)

Azathioprine is an antimetabolite that is used to prevent the rejection of organ transplants. It is a prodrug that is converted to its active metabolite, 6-mercaptopurine, by hepatic enzymes. The active metabolite inhibits the proliferation of T lymphocytes and is used to prevent the rejection of organ transplants.

5.1.6. Ciclosporin (CIC)

Ciclosporin is a cyclic peptide that is used to prevent the rejection of organ transplants. It is a potent immunosuppressive agent that inhibits the proliferation of T lymphocytes and is used to prevent the rejection of organ transplants.

5.1.7. Corticosteroids (CORT)

Corticosteroids are a group of drugs that are used to prevent the rejection of organ transplants. They are potent immunosuppressive agents that inhibit the proliferation of T lymphocytes and are used to prevent the rejection of organ transplants.

5.2.1. Efficacy of CellCept

CellCept has been shown to be effective in the prevention of organ rejection in clinical trials. The results of these trials have shown that CellCept is effective in the prevention of organ rejection.

5.2.2. Overdosage

In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. Reports of cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug.

5.3.1. Efficacy of CellCept

CellCept has been shown to be effective in the prevention of organ rejection in clinical trials. The results of these trials have shown that CellCept is effective in the prevention of organ rejection. The efficacy of CellCept is supported by a large number of clinical trials that have demonstrated its effectiveness in the prevention of organ rejection.

5.3.2. Overdosage

In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. Reports of cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug. In the event of an overdose, supportive treatment should be given. In cases no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the drug.
with respect to mycophenolate mofetil (MMF) in renal transplant patients. In a female fertility and reproduction study in rats, Mycophenolate mofetil had no effect on fertility of male rats at oral doses up to 20 mg/kg/day. The hematopoietic and lymphoid systems were the primary organs affected in toxicology studies conducted with mycophenolate mofetil in the rat, mouse, dog and monkey. These effects occurred at plasma concentrations that were 2 to 3 times the systemic exposure at this dose represents 2 to 3 times the clinical exposure at the recommended clinical dose of 3 g per day. AUC and Cmax are given in drug monograph for patients with normal renal function. Mycophenolate mofetil had no effect on fertility of male rats at oral doses up to 20 mg/kg/day. The hematopoietic and lymphoid systems were the primary organs affected in toxicology studies conducted with mycophenolate mofetil in the rat, mouse, dog and monkey. These effects occurred at plasma concentrations that were 2 to 3 times the systemic exposure at this dose represents 2 to 3 times the clinical exposure at the recommended clinical dose of 3 g per day. AUC and Cmax are given in drug monograph for patients with normal renal function.